觉醒失败后我回山里种田

唐伯虎点李逵

首页 >> 觉醒失败后我回山里种田 >> 觉醒失败后我回山里种田最新章节(目录)
大家在看叶君临李子染全文免费阅读都市极品医神叶辰女总裁的贴身特种兵都市之归去修仙神医如倾抄家流放前,搬空敌人仓库去逃荒我的极品小姨知识供应商前妻攻略:傅先生偏要宠我顾少的老婆重生了
觉醒失败后我回山里种田 唐伯虎点李逵 - 觉醒失败后我回山里种田全文阅读 - 觉醒失败后我回山里种田txt下载 - 觉醒失败后我回山里种田最新章节 - 好看的都市言情小说

结构性机甲旋风土豆

上一章目录下一章阅读记录

1.1 什么是因果推断

因果推断用于衡量一个行为的价值。即判断一个“因”能导致多少“果”。

比如说我今晚复习数学,明天数学考试能提升多少分。这是一个很难回答的问题,因为我无法同时知道不复习和复习后,我分别能考多少分,当前时刻我只能做一种选择并得到一个结果,另一个选择的结果是永远不可知的,这在因果推断里叫做反事实(conterfactual)。

因果推断往往会衍生出一个研究方向,因果发现。即判断一个行为是否和一个事件互为因果(推断是判断带来了多少果,发现是判断是否为因果)。比如冰棍卖的多和电费高往往同时出现,但他们不是因果关系,因为这种现象主要是天气热带来的。

1.2 为什么要研究因果

1.2.1 因果性 ≠ 相关性[2]

设想一个场景:大数据发现,穿鞋睡觉的人第二天往往会头疼。因此我们可以得出穿鞋睡觉和头疼相关,但这显然是反直觉的,客观规律告诉我们穿鞋睡觉不应该导致头疼。那但数据上为什么会呈现出这个现象呢?

原来是穿鞋睡觉的人大多都喝酒了,所以,真正导致头疼的其实是“隐藏”变量-是否喝酒。(这在因果推断里叫混淆变量,confounder)

深入思考一下,我们为什么会得出”因为穿鞋睡觉所以头疼“的错误结论,那是因为我们隐含的观察到“不穿鞋睡觉不头疼“,两组数据对比下得出结论。但是这个结论错误的关键是,两个集合里喝酒的人分布是不一致的,真实的因果是喝酒所以头疼,因此这里会有数学上的“辛普森悖论”。

因此,这个场景我们只能说穿鞋睡觉和头疼有相关性,但不能说他们互为因果。即相关 ≠ 因果

1.2.2 因果推断 > 相关性分析

为了对比因果推断和其他的机器学习问题,学术界提出了三层的因果之梯[3][4]:

相关(Association,观察):解释p(y|x),即已知x的条件下,y会怎么样。这是大部分场景下机器学习所面对的问题,如上一节所述,相关 ≠ 因果,故常规的机器学习方法无法处理因果问题。以上面的case为例,假设x = 穿鞋睡觉,y=头疼,则该层级会看到两者相关性很高的“假象”。

干预(Intervention,行动):解释p(y|do(x),z),即做某个行为x后,y是怎么样的。比如上面的例子,干预穿鞋睡觉的行为x,单独分析穿鞋睡觉(即do(x) = 1)和不穿鞋睡觉(do(x) = 0),在不同喝酒状态下的头疼(y)分布。这个层面可以分析出穿鞋睡觉对头疼可能无影响。但无法判断每个人穿鞋睡觉会不会导致头疼,因为观察不到。

反事实(counterfactual,想象):解释行为x对结果y的影响,即我做了x和不做x,对结果y的影响程度。这是因果推断要解决的问题,比如上面的例子,我不仅看到每个人不穿鞋睡觉头不痛的现象,还能反事实的推断出每个人穿鞋睡觉头不疼,进而得出穿鞋睡觉对头疼的具体影响程度。

上面的解释说明,相关 < 干预 < 反事实(即解决反事实问题的方法可以处理干预和相关问题,反之不成立)。传统的机器学习方法是处理相关性问题的,而因果推断关注反事实层。因此因果推断能解释的事情,将比传统的机器学习方法更“高级”,也更贴合日常的需要

2. 基础理论

2.1 业界流派

因果推断是根据一个结果发生的条件对因果关系得出结论的过程。存在两种研究方法[5]

实验性研究:通过大量随机对照实验(Rct)得出结论。因果推断的难点在于反事实,因此对照实验需要“足够随机”。对上面的例子而言,我们需要在实验组和对照组中确保喝酒的比例是均等的。这是代价昂贵且费时费力的。

观测性研究:对于已有的观测数据,通过建模进行因果关系的研究。这种方式对数学的要求较高且存在准确率的问题,但可操作性强。

显然,实验性研究是理论上最完美的方式,但实际中我们不可能穷举类似“喝酒状态”这种影响因和果的因素,随机对照试验的成本是极大的,仅存在理论的可能。业界的研究重点是,如何优化观测性研究的方法,使其准确度逐步逼近实验性研究。

当前,观测性研究存在两大流派,分别是pearl创立的结构因果图模型(Scm)和Rubin创建的潜在结果模型(Rcm)。[6][7]

2.2 变量定义与说明

为了便于后续介绍,这里先对因果推断的常用变量做一个说明。黑色粗体为重要定义,treatment Effect是衡量干预效果的指标,也是我们期望优化的目标以及模型的输出[5][7][8][9]

2.3 因果分析流程

介绍推断的具体方法之前,我们先说明因果分析的流程。如下图,主要有两个步骤[1][10]:

Identification(因果识别):基于观测数据,输出不同干预下的统计分布(即“原因因子”状态不同时结果因子的分布),以分布的gap作为衡量因果关系的依据。Scm模型主要解决这部分问题(并不是说Scm不能做后续的推断)

Estimation(因果推断):根据统计结果,做反事实的推断,以反事实与观测的gap作为效果大小的衡量,这个过程叫Estimation。Rcm模型重点在这部分

想减肥想减肥好吃,防护服减减肥进去刺骨寒风

喜欢觉醒失败后我回山里种田请大家收藏:(m.315zwwxs.com)觉醒失败后我回山里种田315中文网更新速度全网最快。

上一章目录下一章存书签
站内强推神道丹尊灵气复苏,从承包山头开始战婿归来天绝魔刀盗墓:黑爷的对象非人类六零:爸妈死后给我留下巨额遗产灵契之主战龙归来林北喵系小甜妻:影帝大人,晚上见官道中的黑马科举文抄公的快乐你想象不到名门枭宠:老婆,乖一点无上炼体超级透视医仙第一强者天龙武神诀舰娘之蔚蓝舰姬无上仙运虐仙记征天战途
经典收藏特种兵王在都市都市之逆天大反派老板,来一卦吧!桐花迟迟开【完结】三胎进行时都市之科技王返穿刚穿越的我被直播开棺六岁赶尸:不好意思,我穿紫袍极品透视妖孽恋爱后,学霸她成了撒娇精史上最强钓鱼佬!重生:都市最强至尊最强兵王之王八零娇妻是神医王牌狙击之霸宠狂妻稼穑人生四合院从美好生活开始出道即是巅峰1979万亿打赏金,我在抖音称王!
最近更新四合院之强国有我剑斩魔影:都市修真破案传说全球诡变:我的姐姐竟然是诡重生85:拒当冤种养侄,宠翻四个女儿渣爹抛妻弃女前,小奶团重生了给人喜当爹:竟是自己亲女儿异荒四合院:暴易中海,踹贾张氏70年代,星际传承与商业传奇四合院局外人毫无作用的渣男改造系统我与诸葛大力的二十一次相遇王图霸业,从超度众生开始重生78:什么吃软饭,我这叫追妻系统杀鬼能挣钱,那我打个毛线工重生十年前,暴戾太女强宠九个俊美夫郎赛后被学姐缠上怎么办?你的全力不过是我的儿戏维度修真从蝼蚁到创世神龙一出,吓傻全球御兽师!
觉醒失败后我回山里种田 唐伯虎点李逵 - 觉醒失败后我回山里种田txt下载 - 觉醒失败后我回山里种田最新章节 - 觉醒失败后我回山里种田全文阅读 - 好看的都市言情小说